Exercise 5

Prove that multiplication of complex numbers is commutative, as stated at the beginning of Sec. 2.

Solution

Here we have to show that

 $z_1 z_2 = z_2 z_1,$

where z_1 and z_2 are complex numbers. Let $z_1 = (x_1, y_1)$ and $z_2 = (x_2, y_2)$ and assume that x_1, x_2, y_1 , and y_2 are real numbers.

$$z_1 z_2 = (x_1, y_1)(x_2, y_2) = (x_1 x_2 - y_1 y_2, y_1 x_2 + x_1 y_2)$$

$$z_2 z_1 = (x_2, y_2)(x_1, y_1) = (x_2 x_1 - y_2 y_1, y_2 x_1 + x_2 y_1)$$

Because $x_1x_2 - y_1y_2 = x_2x_1 - y_2y_1$ and $y_1x_2 + x_1y_2 = y_2x_1 + x_2y_1$, the real and imaginary components of z_1z_2 and z_2z_1 are the same. Therefore,

 $z_1 z_2 = z_2 z_1.$