Exercise 5

Prove that multiplication of complex numbers is commutative, as stated at the beginning of Sec. 2.

Solution

Here we have to show that

$$
z_{1} z_{2}=z_{2} z_{1}
$$

where z_{1} and z_{2} are complex numbers. Let $z_{1}=\left(x_{1}, y_{1}\right)$ and $z_{2}=\left(x_{2}, y_{2}\right)$ and assume that x_{1}, x_{2}, y_{1}, and y_{2} are real numbers.

$$
\begin{aligned}
& z_{1} z_{2}=\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}-y_{1} y_{2}, y_{1} x_{2}+x_{1} y_{2}\right) \\
& z_{2} z_{1}=\left(x_{2}, y_{2}\right)\left(x_{1}, y_{1}\right)=\left(x_{2} x_{1}-y_{2} y_{1}, y_{2} x_{1}+x_{2} y_{1}\right)
\end{aligned}
$$

Because $x_{1} x_{2}-y_{1} y_{2}=x_{2} x_{1}-y_{2} y_{1}$ and $y_{1} x_{2}+x_{1} y_{2}=y_{2} x_{1}+x_{2} y_{1}$, the real and imaginary components of $z_{1} z_{2}$ and $z_{2} z_{1}$ are the same. Therefore,

$$
z_{1} z_{2}=z_{2} z_{1} .
$$

